
Building Security In
Editor: John Steven, jsteven@cigital.com

Gunnar Peterson, gunnar@arctecgroup.net

usability, and, of course, security. An
earlier contribution to this depart-
ment1 stressed the importance of
going beyond functional require-
ments. The authors introduced mis-
use or abuse cases as counterparts to
use cases and explained that al-
though use cases capture functional
requirements, abuse cases describe
how users can misuse a system with
malicious intent, thereby identifying
additional security requirements.
Another prior installment2 discussed
how to fit misuse and abuse cases
into the development process by
defining who should write them,
when to do so, and how to proceed.

In this article, we discuss what
abuse cases bring to software develop-
ment in terms of planning. We don’t
assume a fixed budget is assigned to se-
curity measures but that budgetary
constraints apply to the project as a
whole. We believe it’s reasonable, and
often necessary, to trade functionality
against security, so the question isn’t
how to prioritize security require-
ments but how to prioritize the devel-
opment effort across both functional
and security requirements.

Context
All kinds of pathological behaviors
incur costs, resulting in lower than
expected net value. Whether such
behavior is triggered by malicious or

incompetent use, a denial-of-service
(DoS) attack, or failure to scale, non-
functional requirements aren’t parti-
tioned in discrete universes; rather,
they’re defined on a continuum in
which they reinforce or live in ten-
sion with each other.3 In terms of re-
inforcement, consider availability
and scalability: classical security liter-
ature considers the former a security
concern, not the latter, yet well-
established approaches to architect-
ing systems for availability tend to

benefit scalability and vice versa. A
familiar example of the tension be-
tween nonfunctional requirements is
security versus usability.

If requirements are specified by
use cases, the system is said to im-
plement the use cases. However,
implementation hardly seems the ap-
propriate term in the abuse case con-
text. We favor refutation, a term John
McDermott introduced in 2001
(www.acsac.org/2001/abstracts/
thu-1530-b-mcdermott.html). He
argued that developers have a re-
sponsibility to construct an assurance
argument that shows the system will
prevent security breaches given its
threat environment. Of course, such
assurance arguments might only be
possible after implementing ade-
quate security provisions, thus im-
plementation work could flow from
a refutation obligation. Note that

JOHAN PEETERS

Independent
Consultant

PAUL DYSON

e2xT
o be successful, application software needs com-

pelling functionality, availability within the right

timeframe, and a reasonable price. But equally criti-

cal, teams must get nonfunctional characteristics

right—performance, scalability, manageability, maintainability,

Cost-Effective Security

PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/07/$25.00 © 2007 IEEE ■ IEEE SECURITY & PRIVACY 85

Building Security In

refutation can’t extend an absolute
guarantee that no exploitable vulner-
ability remains. Instead, the aim is to
reduce risk to an acceptable level—
no useful system is ever 100 percent
secure, and any attempt to make it so
rapidly falls afoul of the law of dimin-
ishing returns.

Agile development
The agile community’s measure of a
project’s progress is the realization of
business value. Customers determine
how to spend the development bud-
get, in collaboration with the devel-
opment team, based on the
effort/value ratio. Critically, teams
expect changes to both of these para-
meters during the project’s life cycle.4

Agile projects typically rely on
user stories as the planning unit; such
stories serve as lightweight counter-
parts to use cases and thus tend to ex-
press the system’s functionality. In
short, the customer gives each user
story a business value, and the devel-
opment team estimates the effort in-
volved to realize it and the risks
involved with that realization. The
customer and development team use
these two measures to prioritize re-
quirements and determine what
each iteration will deliver. By ac-
cepting that the stories, each story’s
value, and the effort estimate can all
change, each iteration plan poten-
tially represents a new approach to
delivering the maximum value for
the development budget.

However, many agile develop-
ment teams hide the costs associated
with implementing nonfunctional
requirements in the estimates of user
stories. This is problematic. Obvi-
ously, it works for some types of
story—for example, a story that de-
scribes user registration could in-
clude the implementation of a
secure connection—but defending
against a DoS attack or ensuring
scalability isn’t easily hidden in any
single story, so it tends to become a
fudge factor cost across the entire
project. Unfortunately, the cus-
tomer often colludes in this ap-
proach, expecting the team to take
care of things such as making the sys-
tem “secure, fast, and scalable.” In
our experience, however, this collu-
sion often leads to unmet expecta-
tions and nasty scares for both the
customer and the development
team—exactly the situation that
agile processes are designed to avoid.

Planning refined
Agile’s focus on early delivery of busi-
ness value often performs better than
traditional processes because it builds
in early opportunities for feedback
and brings forward the date when the
project begins to generate revenue.
User stories don’t adequately express
nonfunctional requirements, so it
seems natural to extend agile plan-
ning with abuser stories, which, in-
stead of business value, bring an
expected cost defined as the product

of a loss due to a successful attack and
the probability of such an attack. The
planning challenge is then to solve an
optimization problem that not only
takes into account the value realized
from user stories but also the ex-
pected costs incurred by dysfunc-
tional behavior from abuser stories. In
other words, each iteration plan
should optimize net value.

Unfortunately, abuser stories
make the optimization problem
much harder to solve because user
and abuser stories aren’t indepen-
dent. Use cases bring their abuse
cases in tow, but they have a com-
plex, many-to-many relationship, so
adding functionality to the system
could enable new attacks. Con-
versely, several use cases can provide
the attack paths for a given abuse
case. Net value optimization pro-
vides a salient illustration of the attack
surface, which is a system’s exposure
to potential attackers:5 the cost asso-
ciated with concomitant abuse cases
is a good measure of the increased at-
tack surface caused by adding a use
case to the system. With this correc-
tion, some user stories turn out to
have a negative value.

The security community long
ago realized the necessity of thinking
like an attacker to mount adequate
defenses, and writing abuser stories is
a manifestation of that principle. Un-
fortunately, adding abuser stories to
system requirements also makes
planning significantly harder. Al-
though the user story fragment “...an
authenticated user enters the stake
and presses the ‘game start’ button...”
and the pair of user and abuser story
fragments [user story] “...a user en-
ters the stake and presses the ‘game
start’ ‘button...” and [abuser story]
“...an attacker impersonates a legiti-
mate user and uses his credit to gam-
ble...” are logically equivalent, they
aren’t equivalent from a planning
viewpoint. Not only is estimating
value, cost, and effort significantly
more difficult in the latter case, the
complexity of the planning opti-
mization problem also increases

86 IEEE SECURITY & PRIVACY ■ MAY/JUNE 2007 www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 86

Short cycles for hostile environments

Do you want to ensure cost-effective investment in making your software more secure? If so,

we have some specific advice for you. In a turbulent environment, plans must be fluid,

which is why agile development teams pay little attention to long-term planning. Instead, most

of their attention goes into iteration plans, which typically have a three-week horizon. A short

delivery cycle lets the organization respond to changes in the environment on very short notice.

Whether the delivery is effectively shipped is a business decision, not a technical one. Whereas

the traditional reason for short cycles is related to generating revenue quickly, it’s also very

effective in a hostile environment because adversaries continuously field new attacks. Short iter-

ations are typically the best first step a development team can take to become more agile—

but be aware that such change tends to have a high impact on the organization and hence can

meet considerable resistance.

Building Security In

sharply with the number of abuser
stories added. However, this increase
in complexity buys us superior plan-
ning, tracking, and prioritization.

The first sample story unequivo-
cally states the user must authenticate
before gambling, thus the implemen-
tation must guarantee it. Even with-
out access to the abuser story, it isn’t
difficult to see one of the user story’s
acceptance criteria will be that no
unauthenticated user can play. How-
ever, a team without explicit abuser
stories is more likely to overlook the
need for refuting a compromise to the
authentication system than a team
with an impersonation abuser story.
An explicit abuser story also eases
tracking over time—beyond its initial
refutation. Because systems never be-
come wholly immune to attacks,
critical abuser stories should never
disappear off the radar.

Evolving systems
A successful attack’s likelihood can
increase through technological
progress, such as someone automat-
ing an exploit; it can also increase be-
cause the system’s assets have
become more attractive, making the
security breach’s impact much
higher. Because the situation is fluid,
the project plan should track abuser
stories throughout the application’s
life cycle. Even though the develop-
ment team might have previously
mitigated the risks from an abuser
story to an acceptable level, the ex-
pected cost could rise again.

Tracking abuser stories through-
out the application’s life cycle might
seem at odds with the traditional
software architecture maxim of
building security into the architec-
ture instead of retrofitting it, but
agile approaches model the system
under development as a fluid entity
in which any aspect can change at
any time. In the security realm, this
principle channels development re-
sources toward a co-evolution of an
application’s security posture with
the ecosystem’s predators. Rather
than attempting to build in all the se-

curity the application might need
throughout its life cycle, develop-
ment resources are more prudently
spent building in just enough to pro-
tect it from current threats.

We’ve seen many successful ex-
amples of this approach, including
ones in which the architecture
evolves in parallel with its function-
ality. Consider a newly launched
business that developed an e-com-
merce Web site with basic function-
ality and security, and poor
scalability. Once the site was live for
several months and exceeded its ex-
pected targets for users and revenue,
the company developed the system
further, with a much greater focus
on security and scalability, by using
the initial system’s success to secure
additional development funds.

It might be tempting to dismiss
this as a dodgy dotcom business’s
development approach, but many
well-established and well-respected
corporations used a similar method
of investigating the new possibilities
offered via the Internet channel.
We’ve had personal experience with
several large-scale, business-critical
systems developed and released in an
incremental manner, where the non-
functional characteristics evolved in
tandem with functionality.

T he specification and prioritiza-
tion of nonfunctional require-

ments has so far been a somewhat
black art in agile development pro-
jects. Agile’s fundamental goal is that
development projects should deliver
systems that are “fit for purpose”
rather than ones that deliver grand
technical solutions at the expense of

functionality or fail to deliver any-
thing at all, but the definition of “fit
for purpose” must include a system’s
nonfunctional requirements. Ac-
cordingly, we believe explicit plan-
ning and tracking for nightmare
scenario refutation goes a long way
toward helping the customer and
development team place the neces-
sary emphasis on a system’s nonfunc-
tional characteristics.

References
1. P. Hope, G. McGraw, and A.I.

Antón, “Misuse and Abuse Cases:
Getting Past the Positive,” IEEE
Security & Privacy, vol. 2, no. 3,
2004, pp. 90–92.

2. G. Peterson, and J. Steven, “Defin-
ing Misuse within the Development
Process,” IEEE Security & Privacy,
vol. 4, no. 6, 2006, pp. 64–67.

3. P. Dyson and A. Longshaw, Archi-
tecting Enterprise Solutions: Patterns
for High-Capability Internet-Based
Systems, Wiley, 2004.

4. K. Beck, Extreme Programming
Explained, Addison-Wesley, 2005.

5. M. Howard and D. LeBlanc, Writing
Secure Code, Microsoft Press, 2003.

Johan Peeters is an independent soft-
ware architect and the founder of
secappdev.org, a not-for-profit organi-
zation that aims to raise security aware-
ness and grow the skill set of the
developer community. Contact him at
yo@johanpeeters.com.

Paul Dyson is a practicing advocate and
early pioneer of agile development
methodologies. Paul has provided tech-
nical leadership on a wide range of agile
projects, especially those that don't fit
within the agile ”comfort zone” of a
small team working closely with a single
customer. Paul can be contacted at
paul@e2x.co.uk.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 87

Some pragmatic advice

As you can probably guess, pessimism is prolific: although it might take some effort to put your

developers into an attacker’s frame of mind, we find that once they are, they quickly find an

abundance of abuser stories. Putting an abuser story cost on the same footing as user story value

and keeping track of the dependencies between abuser and user stories soon becomes intractable;

hence, our advice is to concentrate the planning effort on the most costly abuser stories.

